Py %
O‘I’ITAN

User Guide for the TITAN Designer for
the Eclipse IDE

Jend Balasko, Adam Knapp

Version 10.1.0, 2024-04-25

Table of Contents

1. Introduction
1.1. Overview
1.2. Target Groups
1.3. Typographical Conventions
1.4. Installation
1.5. Reporting Errors
2. Getting started
2.1. The TITAN Editing Perspective
2.2. Enabling TITAN Actions on the Toolbar
2.3. Enabling TITAN Shortcuts
2.4. Enabling TITAN Decorations
2.5. Excluding resources
3. Setting Workbench Preferences
3.1. TITAN Preferences
3.2. Bracket matching preferences
3.3. Content Assist Preferences
3.4. Debug
3.5. Excluded Resources
3.6. Export
3.7. Folding Preferences
3.8. Indentation Preferences
3.9. Mark Occurrences
3.10. On-the-fly Checker Preferences
3.10.1. Pitfalls
3.11. Errors/Warnings Preferences
3.11.1. Pitfalls
3.12. Naming Conventions
3.13. Syntax Coloring Preferences
3.14. TITAN Actions
3.15. Typing Preferences
4. Managing Projects
4.1. Creating a New TITAN C++ Project
4.2. Creating a New TITAN Java Project
4.3. Adding Directories to the Project
4.4. Adding Files to the Project

4.4.1. Using Wizards to Add Files to the Project

4.4.2. Manually Adding Files to the Project
4.5. Setting Project Properties

© 00 3 O & B DD DN DD DD

BRSO R R R W W W W W W WNNDNDNDNDDNDNDN R R R R
DB W W R, R 000Ul R, O O 0NN R, O 0o U N

4.5.1. Build Configurations
4.5.2. Setting the Local Build Properties of a TITAN Project
The Makefile Creation Attributes tab
The Internal Makefile Creation Attributes Tab
The Make Attributes Tab
4.5.3. Setting the Local Build Properties of a TITAN Java Project
The Internal Build Attributes Tab for TITAN Java Projects
4.5.4. Setting Project and Folder Level Naming Convention Settings
4.5.5. Setting Requirements on the Configuration of Referenced Projects
4.5.6. Setting the Remote Build Properties of a Project
Pitfalls
4.6. Excluding Files and Folders from the Build Process
4.6.1. Excluding a File from the Build Process
4.6.2. Excluding a Folder from the Build Process
4.7. Converting a Folder into a Central Storage
4.8. Opening and Closing Projects
4.9. Saving and Loading Project Properties
4.10. Importing and Exporting Projects
4.10.1. Exporting Projects in Native Format
4.10.2. Importing Projects from Native Format
4.10.3. Importing an Existing mctr_gui Project
4.10.4. Importing Files as Linked Resources
4.10.5. Exporting Projects into the TITAN Project Descriptor (tpd) Format
Exporting Project manually into the TITAN Project Descriptor (tpd) Format
Exporting Projects automatically into the TITAN Project Descriptor (tpd) Format
4.10.6. Importing Projects from TITAN Project Descriptor Format
4.10.7. Importing Projects from the Command Line
4.10.8. Useful Tips for Exporting and Importing
Pitfalls
Native Export and Import
Exporting and Importing Project Information and Projects via TPD Files in Case of
Complex Projects
Exporting Project Content from Command Line Using TPDs
4.11. Formatting Log Files
4.12. Merging Log Files
4.13. Using Project References
4.14. Mapping Elements of the Old Format
4.15. Common Threats
4.15.1. Disabling, Removing or Corrupting the Builder of the Project
4.15.2. Removing or Corrupting the Nature of the Project

4.15.3. Adding or Removing Resources from the Project

46
47
48
49
58
60
60
62
64
65
68
68
68
69
70
70
70
71
71
73
75
77
81
81
85
85
88
88
88
89

89
90
91
91
91
93
93
93
94
94

4.16. Make Archive
5. Converting Existing Projects
5.1. The Construction Principles of Projects
5.1.1. Makefile
5.1.2. Mctr_gui
5.1.3. Eclipse
5.2. Manually Converting an Existing Project to Eclipse Format
5.2.1. Small Project
5.2.2. Large Project Sets Consisting of Several Included Projects or Logically Separate Parts
5.2.3. Large Projects Using Central Storage Folders
5.2.4. Project Referring to Specific Files Outside its Own Jurisdiction
5.3. Convert an Existing mctr_gui Project Using an Import Wizard
6. Building the Project
6.1. Building the TITAN C++ Project
6.1.1. Step by Step
Creating Symbolic Links
Creating or Regenerating the Makefile
Editing the Makefile Skeleton
Module Compilation
Creating Dependencies
Building
6.1.2. Remote Build
Remarks and Tips
6.1.3. Building from the Command Line
Building Directly
Building with an External Script
6.1.4. Cleaning the TITAN Project
6.1.5. Pitfalls
6.2. Building the TITAN Java Project
6.2.1. Step by Step
Module Compilation
Building
6.2.2. Cleaning the TITAN Java Project
7. Editing with TITAN Designer Plugin
7.1. File Types
7.2. Syntax Highlighting
7.3. Matching Brackets
7.4. Folding
7.5. On-the-fly Parsing
7.5.1. Preprocessing of ttcnpp and ttcnin Files

7.5.2. Limitations

94

96

96

96

96

97

98

98

99
100
100
101
102
102
102
102
103
103
103
104
105
106
107
108
108
108
110
111
111
111
111
112
112
113
113
113
113
114
114
115
118

7.6. On-the-fly Semantic Checking
7.6.1. Limitations
7.7. Content Assistance
7.7.1. Assistance with Keywords
7.7.2. Assistance with Code Skeletons
Using the Inserted Skeleton
7.7.3. Assistance with Dynamic Elements
7.7.4. Content Assistance Limitations
7.8. Documentation comments
7.8.1. Generate documentation comment
7.8.2. Documentation comments limitations
7.9. Find Declaration
7.10. Find References
7.11. Mark Occurrences
7.11.1. Limitations
7.12. Peek declaration
7.13. Refactoring
7.13.1. Rename Refactoring
7.13.2. Limitations
7.14. Editing Configuration Files
7.14.1. Module Parameters Section
7.14.2. Test Port Parameters Section
7.14.3. Components, Groups and Main Controller Section
Main Controller Options
Components
Group Section
7.14.4. Execute and External Commands Sections
External Commands
Elements to be Executed
7.14.5. Include and Define Sections
Included Configurations
Definitions
7.14.6. Logging Section
Components and Plug-ins
Logging Options for the Selected Component/Plug-in
7.14.7. Limitations on the Graphical Pages

8. Contents of the Problems View

8.1. Types of Markers

8.2. Eclipse Provided Features

8.3. Grouping of Problems
8.3.1. Group by Severity

118
118
118
119
119
119
120
121
121
122
123
123
124
125
125
125
126
126
127
127
128
128
129
130
130
131
131
132
132
133
133
134
134
135
135
136
137
137
137
138
138

8.3.2. Group by Type
8.3.3. Group by TITAN Problems
9. Contents of the Tasks View
9.1. Types of Markers
10. Contents of the Outline View
10.1. The Tree
10.2. The Toolbar
10.2.1. Sorting Elements
10.2.2. Categorizing Elements
10.2.3. Grouping
10.2.4. Filtering Elements
10.3. Outline View Icons
11. The Call Hierarchy View
11.1. The Tree
11.2. The Call List
11.3. The Toolbar
11.3.1. The refresh button
11.3.2. The auto jump to definition switch
11.3.3. The call list switch
11.3.4. The close all button
11.3.5. The search history
12. Extensions to the Project Explorer
12.1. Filtering Resources from the View
13. References
14. Abbreviations

138
139
140
140
141
141
141
141
142
143
143
144
146
146
147
147
147
148
148
148
149
150
150
153
154

Abstract

This document describes detailed information of using the TITAN Designer for the Eclipse IDE plug-
in.

Copyright

Copyright (c) 2000-2024 Ericsson Telecom AB.
All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 which accompanies this distribution, and is available at

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.
Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson shall have no liability for any error or damage of
any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. Introduction

1.1. Overview

This document describes the general workflow and use of the TITAN Designer for the Eclipse IDE
plug-in.

The TITAN Designer plug-in provides support for:

* creating and managing projects;

 creating and working with source files;

building executable code;
* automatic analysis of the build results;

e remote build.

1.2. Target Groups

This document is intended for system administrators and users who intend to use the TITAN
Designer plug-in for the Eclipse IDE.

1.3. Typographical Conventions

This document uses the following typographical conventions:

* Bold is used to represent graphical user interface (GUI) components such as buttons, menus,
menu items, dialog box options, fields and keywords, as well as menu commands. Bold is also
used with ’+ to represent key combinations. For example, Ctrl+Click

» The "/" character is used to denote a menu and sub-menu sequence. For example, File / Open.

* Monospaced font is used represent system elements such as command and parameter names,
program names, path names, URLs, directory names and code examples.

e Bold monospaced font is used for commands that must be entered at the Command Line
Interface (CLI), For example, metr_gui

1.4. Installation

For details on installing the TITAN Designer for the Eclipse IDE plug-in, see the Installation Guide
for TITAN Designer and TITAN Executor for the Eclipse IDE.

1.5. Reporting Errors
The following information should be included into trouble reports:

 Short description of the problem.

* What seems to have caused it, or how it can be reproduced.

If the problem is graphical in some way (displaying something wrong), screenshots should also
be included.

If the problem generates some output to:
o TITAN Console
o TITAN Debug Console

If the Error view contains some related information, that should be copied too.

Before reporting a trouble, try to identify if the trouble really belongs to the TITAN Designer for the
Eclipse IDE plug-in. It might be caused by other third party plug-ins, or by Eclipse itself.

Reporting the contents of the Consoles and the Error log is important as TITAN consoles display the
commands executed and their results and the Error log may contain stack traces for some errors.
To identify relevant log entries the easiest way is to search for classes whose name starts with
"org.eclipse.titan". The location on which the Error Log view can be opened can change with Eclipse
versions, but it is usually found at Window / Show View / Other... /| PDE Runtime / Error Log or
Window / Show View / Other... / General / Error Log.

Chapter 2. Getting started

This section explains how to setup Eclipse to access every feature provided by TITAN Designer.

2.1. The TITAN Editing Perspective

TITAN Designer provides its own perspective to Eclipse. This is a layout of visual elements that
provides a good environment for working with TITAN. This layout is a starting point, since users
can create their own layout in Eclipse, to set the best working environment for themselves.

Open the TITAN Designer perspective by opening Window / Open Perspective / Other...

E Window | Help

Mew Window 2 S REEE

Editor ¥
Hide Toolbar

Open Perspective k Other...

Show Yiew b TCN-3 Test Fwecutnr
Figure 1. Opening a perspective

In the pop-up window select TITAN Editing.

Wﬂﬂnﬁ!

Ezcvs Repository Exploring
Tff Debug

By Git ‘
aJ_lava

E,J_Iava Browsing
EJJava Type Hierarchy
== Plug-in Development
|:1“_-| Resource (default)

|| | E9Team Synchronizing [l
@ TITAN Editing
-;-"I'ITI'AN Executing
@ TITAN Log Viewer

L ~

Figure 2. Selecting the TITAN Editing perspective

The perspective is divided in three fields. Figure TITAN Editing Perspective shows the default
layout.

& runtime_photon_demo - HelloWorld/sre/MyExample.tten - C\Users

ntime_photon_demo - Eclipse Platform — O >

File Edit MNavigate Search Project Run Window Help

M-I R -0 - Q0 @5 G O P TogglComment fagi P~ > ¥a o o- - E,’“(:,Resource @ TITAN Editing
[y Project Explorer 53 = 8 3] *MyExample.ttcn 53 = B 5= Outline & = 8
, =] <}===>| - I :'idTI[N.—‘BEversion of "Hello, world!™ ~B i EE e
v i@ HelloWorld [-fg -=] By ule Mysxampie %
v sre type port PCOType message -
5 MyExample.cfg {
My I
3 MyEample.tien inout charstring; v 3] Mytxample
= PCOType.cc } "L PCOType

= [MTCType
=/ PCOTypehh "
ye Eype component MTCType i tc Hellow()

port PCOType MyPCO_PT; 3 tc_Hellow2()
}

testcase tc_HelloW() runs on MTCType system MTCType
=1
map(mtc:MyPCO_PT, system:MyPCO_PT);
MyPCO_PT.send("Hello, world!™}); =
setverdict(pass);

}

testcase tc_HelloW2() runs on MTCType system MTCType
L} xtimer| JL.T := 15.9;

map(mtc:MyPCO_PT, system:MyPCO_PT);

MyPCO_PT.send("Hello, world!™);

TL T.start;

= alt {

[] MyPCO_PT.receive("Hello, TTCN-3!") { TL_T.stop; setverdict(pass); }
[] TL_T.timeout { setverdict(inconc); }
1 MyPCO PT.receive { TL T.stop: setverdict(fail); } e

51 Problems 2 | B Console & Progress J=| Tasks €| EmorLog = ¥ =8

1 errar, 0 warnings, 0 others
=

Description Resource Path Location Type
~ @ Errors (1 item)

@ no viable alternative at input stimer TL_T' MyExamplett.. /HelloWorld/src line 23 on-the-fly sy...

‘ of 1024M ¢

Figure 3. TITAN Editing Perspective

The tab on the left side is the Project Explorer view. This is a navigator where projects can be

managed; for example, opened, renamed, or closed. Files can be added or removed from a project
and so on.

The biggest pane of the perspective is the editing area (upper right). Here the code can be edited
using the provided source code editors (or built-in text editors), once a file had been opened.

The four tabs at the bottom of the picture open the following views:

The Problems view (see here) displays information about problems found in the project. The
problems reported can be ordered using several criteria (see here).

The Console view contains the commands executed and their output; Consoles only appear if
there is something to display. The Console view has two sub views (TITAN console and TITAN
Debug console, respectively); by default only one of both is displayed in the pane. The hidden
sub view can be displayed by clicking on the display icon on the right of the pane.

The TITAN console displays the commands executed by the parts of TITAN Designer and their
results.

* The TITAN Debug console holds special debug related information for the plug-in developers. If

something strange happens this might hold additional information that the user can include in
his trouble report.

NOTE The contents of this view have no effect on the work of the user.

» The Progress view contains information about the progresses of Eclipse related operations.
Lengthy operations (for example building, remote building or the first on-the-fly build pass)
always provide information to the user about their progress. Operations in general can be
canceled in this view, provided that cancellation is allowed.

* The Tasks view contains information extracted from the projects in a sorted manner. The
contents of this view differ from the contents of the Problems view in that they are usually not
errors, but TODO or FIXME like notations. This view is described in detail here.

2.2. Enabling TITAN Actions on the Toolbar

TITAN Actions or Change Set Operations are commands (apart from those used in the build process)
that can be executed on TTCN-3 files.

The TITAN Actions are enabled by checking the Change Set Operations submenu on the tab Tool
Bar Visibility after selecting Window / Perspective / Customize Perspective (see the next figure).

= Customize Perspective - TITAN Editing - Elﬂlg

Tool Bar Visibility | Menu Visibility | Action Set Availability | Shortcuts

Choose which tool bar items to display.

Tool Bar Structure;

i [H|E File| it
4 [H] ChangeSet Operations
B Convert X5D files to TTCN-3
%54 Generate Test Port skeleton

TITAH

D;ﬁ Check compiler version

m

[
k] k]
m m [}
[[
3 k|
L L
L
: -]
=]
[
[
m m
3
3
A -
L L
=]]
1
k]
m -
=]
[=]
3
=]
m
1
=]
m
3
m m
1
m e
3
m
]
L
=]
3

ﬁ;ﬁ Check compiler version (native Windows version)
a Check syntax and semantics (no code generation, native Windows version)
Eg- Check syntax (no semantic check, no code generation, native Windows version)

[Titan debug teclbar il

[T Filter by action set

@ [ok [Cconcel

b

Figure 4. Enabling Titan Actions or ChangeSet Operations on the Toolbar

Enabling TITAN Actions will add a new toolbar with the TITAN Actions commands described below
to the available ones:

FIgEtE Sedarch I"'FD_]ECt H
- . L 3
[l 53 & o2 9 DD

Figure 5. TITAN Actions commands

The command Check syntax checks the selected files for syntactical errors; no other operation is
performed. When a folder is selected, the check is performed for all the files in the folder. The
command is only available if at least one file is selected.

The command Check semantics checks the selected files both syntactically and semantically; no
other operation is performed. When a folder is selected, the check is performed for all the files in
the folder. The command is only available if at least one file is selected.

The command Check compiler version displays the version of the compiler.

The command Generate Test Port skeleton generates a test port skeleton from the selected TTCN-3
file. The command is only available if there is exactly one selected file in the project.

The command Convert XSD files to TTCN-3 takes as input the files selected by the user, and converts
them into TTCN-3 files. As for the output the user is asked to select a folder, where the newly
created files will be written to.

The output of the commands is written to the TITAN Console. Commands are executed regardless of
the file properties; for example, the selected file will be syntactically or semantically checked even
if it is excluded from the build process.

2.3. Enabling TITAN Shortcuts

TITAN Shortcuts appear in the File/New menu and are used to open a new ASN.1 Module, a
Configuration file, a TITAN Project (C++ or Java) or a TTCN-3 Module, respectively.

The TITAN Shortcuts are enabled by checking the appropriate box on the right pane of the
Shortcuts tab after selecting Window / Perspective / Customize Perspective... (see the next figure
).The boxes are checked by default.

£ Customize Perspective - TITAN Editing

Toolbar Visibility Menu Visibility Action Set Availability Shortcuts

Select the shortcuts that you want to see added as cascade items to the following submenus. The selections made will
only affect the current perspective (TITAN Editing).

Submenus: Shortcuts:
New Shortcut Description
Shortcut Categories: it ASM1 Module
[] Java [v] %5 Configuration file
] Maven [] @ TITAN Project (C++)
[] Oomph V] @TITAN Project (Java)
(] Other 3 TTCN3 Module
[] Plug-in Development
[] Tasks
TITAN
[] User Assistance
[] XML
[] Xtend
[] Xtext
W
< b < >

@ Apply and Close Cancel

Figure 6. Enabling the TITAN Shortcuts

2.4. Enabling TITAN Decorations

Decoration here means a string added to a project, folder or file name or a picture overlapping the
icon of the resource to provide the reader with additional information.

The « mark on the top right corner of a project’s icon means the project has been built and the
binaries are up to date. If the plug-in detects the modification of a non-excluded file or folder inside
the project, the check mark will disappear.

Decoration after a project name shows whether the Makefile has been automatically generated. If it
has, the corresponding command line switches of the command makefilegen are displayed between
brackets; for example, [-s] for single mode.

Some of these:

* a-use absolute pathnames in the generated Makefile

* c - use the pre-compiled files from central directories (central storage)
 f-force overwriting of the output Makefile

» g - generate Makefile for use with GNU make

e R-use function test runtime (TITAN _RUNTIME_2)

* s - generate Makefile for single mode

*]-use dynamic linking
No additional text is displayed if the Makefile has been manually generated (not even the brackets).

Decoration after a folder name indicates that the folder is used as a central storage ([
centralstorage]) or the folder is excluded from build ([excluded by X]). If both are true, [
excluded by X centralstorage] is displayed.

Decoration after a file name denotes exclusion from build. Files excluded from build are marked [
excluded].

Decoration is enabled by checking the TITAN Decorator box after selecting Window / Preferences
| General / Appearance / Label decorations; see the figure below.

& Preferences O >
type filter text Label Decorations o~ T
w (General -~
v Appearance [] Maven Yersion Decorater =
Colors and Fonts MPM File decorator
Label Decorations Prototype Decorator
Capabilities Symbelic links
Compare/Patch Task Change Set Decorator
Content Types Task Context Decorator
Editors _ Task Decorator
Error Reporting TITAM Decorator

Globalization . L
Keys TITAM Log Viewer file size decorator

Metwork Connections Virtual Folders
Mews Ktext Mature

Motifications

Perspectives Description:

Project Matures |

Search

- Securitv 5 v Restore Defaults Apply v

® g Ién @ Cancel

Figure 7. Enabling TITAN Decoration

Decorations are extending the information displayed for elements. As there can be
NOTE several decorations extending an element, the texts shown above might not be the
only ones displayed.

2.5. Excluding resources
The possible reasons for a resource being excluded from build are as follows:
* Excluded by user:

These resources were explicitly excluded from the build by the user. (For more information

refer here)

* Excluded as working directory:

The working directory by definition is excluded from the build process, in order to make sure,
that source files and generated file do not mix.

* Excluded by regexp:

The names of these resources was matching one or more exclusion regular expressions
provided on the Excluded resources preference page (for more information refer here.)

* Excluded by convention:

10

On the Eclipse platform if the name of a resource (either a file or a folder) starts with a dot, it
indicates that the resource is some special resource used by one of the plug-ins exclusively. All
other plug-ins should exclude these files from their operation; they should not be regarded as
part of the project by any plug-in other than its creator.

When either the excluded resources or the working directory filter is active, it is
NOTE indicated by the projects being decorated with the "[filtered]" decoration too. For
more information on these filters please refer here.

Chapter 3. Setting Workbench Preferences

This section gives an overview about the various settings related to the workbench provided by the
TITAN Designer plug-in.

In Eclipse, workbench preferences are used to set user specific general rules, which apply to every
project; for example, preferred font styles, access to version handling systems and so on.

Workbench preferences are accessible selecting Window / Preferences. Clicking on the menu item
will bring up the preferences page. The opening window contains a preference tree on the left pane
to ease navigation (see figure below).

& Preferences

type filter text

TextMate ~
TITAM Common Preferences
TITAM Executor
Titanium Preferences
TITAM Log Viewer
v TITAN Preferences
Content Assist
Debug
Excluded resources
Export
Folding
Highlight matching brackets
Indentation
Mark occurrences
On-the-fly checker
Syntax Coloring
TITAN actions

Typing
Validation
Version Control (Team)
XML
XML (Wild Web Developer)
Atend
Kiext >

@l ®

Figure 8. TITAN preferences sub-tree

11

This section only concerns the preferences that are available under the TITAN preferences node of
this preference tree.

3.1. TITAN Preferences

& Preferences | x
“EWJE filter text TITAN Preferences LC VI |
TextMate . Preferences for TITAN
TITAN Common Preferences
TITAN Executor TITAN installation path: Chcygwine4\home\eknaada\titan.core\Install Browse...

Titanium Preferences
TITAN Log Viewer
~ TITAN Preferences
Bracket matching options
Content Assist When the compiler runs the on-the-fly markers: Stay ~
Excluded resources

1Use markers for build error notification instead of a dialog.

[Treat on-the-fly errors as fatal for build (the project will not build).

When On-the-Fly analyzation ends the compiler markers: Become outdated ~

Maximum number of build processes to use: 8
Export o . i
Folding] Limit maximum number of other parallel processes to this number
Indentation [] Display debug preferences
Mark occurrences Action on the console before build: Print delimiter ~

On-the-fly checker
Syntax Coloring
TITAN actions Compiler information

Typing The version of the compiler used: 8.1.0 Details >>
Version Control (Team)

XML (Wild Web Developer) o Restore Defaults Apply
@ g 3 Apply and Close Cancel

Figure 9. TITAN preferences
The following options can be set on the TITAN preferences page (see the figure above):
» TITAN installation path.

The path to the TITAN installation directory. The TITAN version used to build the projects can be

changed by modifying the contents of this field. The Browse button can be used to browse the
directories.

* License file.The path must point to a valid TITAN license file. The Browse button can be used to
browse the files.

This option is not available in all versions.
* Use markers for build error notification instead of dialog.

By default, an error during the build process is reported in a dialog window. However, this is
sometimes the unwanted behavior; for example, when a job is running in the background. If
this option is checked, no dialog window will pop-up; instead, an error marker will be placed on
the project resource, seamlessly integrated into the general error processing behavior of the
tool. The error message is assigned to the marker in this case.

The option is UNCHECKED by default.

* Treat on-the-fly errors as fatal for build.
By default if the on-the-fly analyzer recognizes a syntactic or semantic error, that has no effect

on the build process of the project. However, most of the time this is not optimal behavior,

12

because if the semantic analyzer finds something erroneous, the build process will also find it
erroneous and as such the build process will not be able to fully complete (plus in such cases the
time spent by the build process to detect and report the problem is actually wasted as the
problem is already known).

The option is NOT CHECKED by default.

When on-the-fly analysis ends the compiler markers.

When the on-the-fly analyzer starts it can trigger the following behaviors for error markers
generated by the compiler previously: “Stay unchanged”, “Become outdated”, and “Are
removed”.

The default setting is: “Become outdated”

When the compiler runs the on-the-fly markers.

When the compiler starts it can trigger the following behaviors for error markers generated by
the on-the-fly analyzer previously: “Are removed”, “Stay”. Setting this option to “Stay” can
enhance the speed of the on-the-fly analyzer, because if the markers need to be refreshed, so
does all syntactic and semantic information needs to be refreshed too.

The default setting is: “Are removed”.

Maximum number of build processes to use.

By default, the build process is only executing in one process which is not efficient on modern
multi-core hardware. Using this option the users can set how many parallel processes shall be
used by the build process at the same time to compile modules.

The option is set equal the number of processors/cores available in the system by default.

Limit maximum number of other parallel processes to this number.

During the initial processing of projects several threads are created to utilize the parallelism of
modern CPUs and improve performance. However, in some cases the number of created
threads exceeds the OS or user thread/process limit that results in Out Of Memory exception.
This option limits the number of parallel processes to the previous number.

Display debug preferences

By default, the Designer plug-in isn’t logging debug information to the Debug Console to help
solving problems. However as errors are reported to the Error Log of Eclipse this information is
rarely used. Most of the time these printouts hold no value for the users. Debugging and load
balancing features can be set by this option see here.

The option is NOT CHECKED by default because most of the time these features hold no value
for the users.

If you want to set any of these options, set the options "Display debug preferences" then press
button "Apply". An entry "Debug" appears under "TITAN Preferences" on the left pane (see the
figure below).

13

£ Preferences

O *
\ type filter text TITAN Preferences eroy
TextMate ~ Preferences for TITAN
TITAN Common Preferences
TITAN Executor TITAN installation path: C\cygwinb4\home\eknaada\titan.core\Install Browse...
Titanium Preferences] Use markers for build error notification instead of a dialog.
TITAN Log Viewer []Treat on-the-fly errors as fatal for build (the project will not build).
~ TITAN Preferences . .
: . When On-the-Fly analyzation ends the compiler markers: Become outdated ™
Bracket matching options
Content Assist When the compiler runs the on-the-fly markers: ~
Debug Maximum number of build processes to use:
Excluded resources o . i
Export [Limit maximum number of other parallel processes to this number
Folding Display debug preferences
Indentation Action on the console before build: ~
Mark occurrences
On-the-fly checker o .
Syntax Coloring Compiler infarmation
TITAN actions The version of the compiler used: 8.1.0 Details »=
Typing
Version Control (Team) o Restore Defaults Apply
® D 23 Apply and Close Cancel

Figure 10. Display Debug preferences

Below the last option, the compiler information section is present containing the version of the
currently set compiler and information about the license of the user is displayed. The "Details"
button shows more information about the configured compiler that can be particularly useful
when there are some problems with the configured compiler or with the user license (see the figure

below).

& Compiler information

Version: 8.1.0

Build date: Apr 26 2022 12:10:46
Compiled with: GCC 11.2.0

Using OpenSSL 1.1.1n 15 Mar 2022
Commit id: b37029%fal-dirty

Copyright (c) 2000-2021 Ericsson Telecom AB

o_' . TTCN-3 and ASN.l Compiler for the TTCN-3 Test Executor

OK

Figure 11. Compiler information

In case the license file is not provided, is not valid or has expired an additional link

NOTE

will appear on this page. Clicking on this link a browser will open directing the user

to a web page where he can order a new license or can ask for a renewal of his

existing one.

14

3.2. Bracket matching preferences

& Preferences O X
| pe filter text X | Bracket matching preferences v
I:I:: Eommon Preferences ~ Preferences for the editor's matching brackets
t
HAT Bxecator Highlight matching brackets
Titanium Preferences
TITAN Log Viewer Color: I
~ TITAN Preferences Enable coloring of matching brackets (EXPERIMENTAL)
Bracket mat_chlng preferences Bracket color level 1 -
Content Assist
Debug Bracket color level 2 -
Excluded resources Bracket color level 3 -
Export
Folding Bracket color level 4 -
Indentation
Bracket color level 5
Mark occurrences -
On-the-fly checker Bracket color level 6 -
Syntax Coloring
Bracket color level 7
TITAN actions -
Typing Bracket color level 8 |:|
Version Control (Team)
XML (Wild Web Developer)
v Restore Defaults Apply
® 24 53 Apply and Close Cancel

Figure 12. Bracket matching preferences
The following options can be set on the Bracket matching preferences page (see the figure above):
» Highlight matching brackets
Checking this option enables highlighting of matching round, square and curly bracket pairs.
» Color
The highlighting color is selected with this option.
» Enable coloring of matching brackets

Checking this option enables coloring of matching round, square and curly bracket pairs
according to their level of depth.

This preference depends on the semantic highlighting option, i.e. that must be
NOTE enabled to have effect of this preference. It might be necessary to reopen the

current file in the editor to enable re-parsing of the file and applying the change.

¢ Bracket color level x

15

The highlighting color related to the specified level of depth is selected with this option. If the
bracketing is more than eight level deep, the coloring starts over from level 1 (see <<,the figure
below>>).

module coloring {

function f() {
var integer 1 := f2(((((.a[1]1.)))));
}

h

Figure 13. Coloring of matching brackets

3.3. Content Assist Preferences

& Preferences u X
| type filter text Content Assist CRAAS
]
TextMate Preferences for the editor's content assist
TITAN Common Preferences]
TITAN Executor Insertion
Titanium Preferences [IInsert single proposals automatically
TITAN Log Viewer []Insert common prefixes automatically
~ TITAN Preferences Sorting
Bracket matching options - | P
s
Content Assist ort proposals y relevance
Debug Maximum amount of proposals to show | 0

Excluded resources

Auto-Activation
Export

Folding Enable auto activation

Indentation Auto activation delay:
Mark occurrences
On-the-fly checker
Syntax Coloring

Content of hover window
Enable code hover popups

TITAN actions Hover window content: | code peek ™
Typing
Version Control (Team) o Restore Defaults Apply
@ Dy 23 Apply and Close Cancel

Figure 14. Content Assist
The following options can be set on the Content Assist page:
* Insert single proposals automatically

When the analysis finds only one possible proposal to show to the user, it can be set whether it
should be inserted automatically, or displayed anyway.
This option is NOT CHECKED by default.

16

* Insert common prefixes automatically

Very often all of the listed proposals start with a common prefix, that is longer than the text
being extended (for example naming conventions usually have such prefixes).

In such cases if this option is checked, the common prefix will be inserted automatically. This
way the user only has to enter those characters that actually differentiate between two options,
allowing finishing with the actual code completion much faster.

This option is NOT CHECKED by default.

* Sort proposals

The sorting of the proposals can set to be done either "by relevance", or "alphabetically".

If ordered by relevance definitions that were declared closer in the scope hierarchy will be
closer to the top of the proposal list. When the aim of the code compilation is usually a local
variable, using this sorting method it can be found much faster.

If ordered alphabetically all of the items will be in alphabetical order, although not as fast in
completing local definitions, it might be easier to search for most people.

The default setting is: "by relevance".

* Enable auto activation

The code completion cannot only be activated by the user by pressing CTRL + SPACE, but it can
also be set to be automatically activated every time the ".' character is entered.
This option is CHECKED by default.

* Auto activation delay

The delay between the auto activation of the content assistant, and its actual starting can be set
here in milliseconds.
The default setting is: 500 milliseconds

* Enable code hover popups

If enabled, a popup window is shown when hovering over different elements of the source
code. The content is context-dependent and presents relevant information related to the
selected part of the source code. See also the next preference.

* Hover window content

The content of the popup window can be specified by this preference. This option can be
directly changed using the shortcut button of the hover window (see the figure below). Two
types are implemented:

o code comment and info: relevant information is shown based on the documentation
comments (if available) and the semantic information related to the selected part of the
source code.

o code peek: the definition of the selected code part is shown in the popup window.

17

type set r2 {

type set r2 {

charstri charstri
charstri| type set r2 { charstri] ® type set @simple.r2
integer charstring f1, integer
} charstring f3 optional, } € Members
: integer il charstring /1
charstring /3
integer i/
% Click to switch to info view G, Click to switch to source view

Figure 15. Hover window content

3.4. Debug

Please note that this option is only available if you enable "Display debug preferences" under "TITAN

Preferences” (see here).

type filter text

General

Ant

Help

Install/Update

Java

Plug-in Development

Run/Debug

Team

TITAM Common Prefers

TITAM Executor

> TITAN Log Viewer

TITAM Preferences
Content Assist
Debug
Excluded resources
Export
Felding
Highlight matching
Indentaticn
Mark eccurrences
On-the-fly checker
Syntax Celering

Debug

TITAM actions
Typing

«_Titanium Preferences
1 | 1 | i

Debug optiens for the Titan plugins

* Debug console

[] Enable debug conscle

Console timestarmp
[] Print AST element for the cursor position

* Lead balancing
Tokens to process between thread switches

100
Thread priority

I

Sleep the syntax analyzer th